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Abstract—In this paper, we design a highly accurate method
for 3D mapping of multi-floor buildings. The basic idea
is to combine the laser range sensor for metric mapping
and barometric pressure sensor for detecting floor transition
and kinect sensor for collection 3D environment information.
Meanwhile, we adopt the Monte Carlo localization in 2D
map to improve the accuracy of the localization. Finally, the
barometric pressure is used to merge the 3D map of the multi-
floor buildings. By using the information collected by a real
robot in a typical multi-floor environment, the method is tested
and compared with some other approaches, the results show
that the method is efficient and has a better result in 3D
mapping of multi-floor buildings.
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I. INTRODUCTION

In the last two decade, the problem of the Simulta-

neous Localization and Mapping (SLAM) has been one

hot research direction, and attracted the attention of high-

technological companies [1] [2]. The SLAM techniques

build a 2D mapping or 3D mapping of an unknown environ-

ment and localize the robot in the map with a strong real-

time operation. In the complex and dynamic environments,

the robot can quickly obtain the 3D map from the local

environment. Currently, many methods have been proposed

to solve the SLAM problem, such as ORB-SLAM [2],

RGBD-SLAM [3].

The idea of the paper is that a robot uses a kinect, a

lidar and odometry and then fuse them with Monte Carlo

localization (MCL) algorithm. The approach can avoid the

process of mismatching and image feature extraction. Firstly,

we build the 2D map with the lidar and Gmapping package

[4] [5], and the robot can focus on the real-time localization

and mapping. Then we use the robot poses in the process

of the navigation that we get at different time affording by

the MCL. Thus, we can get the pose transition matrices by

calculating the these poses which are used for 3D point cloud

registration [6]. Finally, we build the 3D map, through a

series of position transformation. We mainly adopt the value

of the barometric pressure to merge the whole floors by

the point cloud registration with the transition matrices onto

a global coordinate frame physically consistent multi-floor

representation.

In the rest of the paper, we introduce the related work

in section II. In section III, we present the implementation

method. In section IV, we use the some experiments to verify

the idea and compare with some state-of-art algorithms. The

last section summarize the our work.

II. RELATED WORK

Building map of the indoor environment is a hot research

topic. Currently, many solutions exist in 2D maps and meth-

ods to extend them to 3D are emerging [5]. In this paper,

we use the (metric) occupancy maps in the 2D maps [7].

Wheeled robots often rely on 2D laser range scanners, which

commonly provide very accurate geometric measurements of

the environment at high frequencies. To compute the relative

motion between observations, most state-of-the-art SLAM

use variants of the ICP algorithm [3]. Recent approaches

demonstrated that even small changes of the robot pose can

be estimated [8] using two laser range scanners and ICP.

Though there are many methods of solution for 2D

mapping and 3D mapping, only a few approaches are able

to deal with the multi-floor buildings. A visual odometry

based approach is proposed to analyze the alignments of

floors [9]. In this approach, however, the floors should be

mapped sequentially; and salient visual features are required

during floor transitions. In [10], the author proposed to use

a barometer pressure value for mobile robot localization in

outdoor environment. This method use differential Global

Positioning System (GPS) receiver and barometric sensor.

The pressure value is applied to estimate the altitude in some

areas where the GPS can not get the accurate information.

In this paper, we present a method different from the

above mentioned ideas. We use the Monte Carlo Localiza-

tion (MCL) algorithm in the process of the navigation which

can provide a higher localization accuracy. Meanwhile, we

adopt the rotation matrices of the different poses to generate

3D mapping when the robot moves from the current position

to the next position. After building the map of each floor, we

can merge the maps and build the 3D map of the multi-floor

buildings.

III. METHOD

We use a laser range sensor to generate 2D maps of floors

and estimate pose transformation using a MCL algorithm for
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kinect, which is applied to 3D point cloud registration. At the

same time, we use barometric pressure sensor to detect the

floor transitions. Finally, we get the 3D mapping of multi-

floor buildings based on sensors fusion.

A. Mapping of Individual Floors

In this paper, based on the state-of-art-algorithms that

address 2D mapping problem, we use the Gmapping package

to build our 2D maps. Gmapping is a package of the Robot

Operation System (ROS) [4] [11] [12].

We use the Rao-Blackwellized particle filters (RBPF)

algorithm to generate the 2D map from the lidar range data

[13]. The key contribution of the RBPF is to double check

the joint posterior for the path of the mobile robot x1:t =
x1 . . . , xt and the map m,based on the lidar observations

z1:t = z1 . . . , zt and the wheeled odometry measurements

u1:t = u1 . . . , ut. We use the following equation to present

the joint posterior.

p(x1:t,m | z1:t, u1:t−1) = p(m | x1:t, z1:t)·p(x1:t | z1:t, u1:t−
1)(1)

According to this equation, we use the probability p(x1:t |
z1:t, u1:t−1) to estimate the path of the robot, which can

build the map p(m | x1:t, z1:t).

B. Monte Carlo Localization (MCL)

MCL is applicable to both local and global localization

problem in robotics. Through this algorithm, we can get the

robot position in the 2D map. Both the robot motion model

p(xt | xt− 1, ut−1) and measurement model p(zt | xt) are

applied to the prediction stage and the update stage of MCL

[14].

In this paper, we use the KLD-sampling which is a

variant of the MCL. It is derived from the Kullback-Leibler

divergence, which is a measure of the difference between

two probability distributions. At each iteration of the particle

filter, KLD-sampling determines the number of samples such

that, with probability 1 − δ, the error between the true

posterior, and the sample-based approximation is less than ε
. The algorithm takes as input the previous sample set χt−1

along with the map m and the most recent control ut and

measurement zt. For the implementation of MCL, we refer

to [6] [14].

C. 3D Map Building

In this section, we use the kinect sensor to collect the

color and depth image where the robot pose xt at the time

t in the 2D map can be obtained. At the same time, through

wheeled odometry and lidar range, KLD-sampling MCL

obtains control information and measurement information to

locate the robot in the 2D map. According to this method,

we obtain the pose transformation between the current and

last moment, which is used for the kinect, by the following

equation:

xt = R · xt−1 + t (2)

Figure 1. The 3D map building

Where R is a rotation matrix and t is a translation vector.

The kinect uses the above information to get the images at

different moments and to build a 3D map which is generated

by the point cloud registration. A general overview of the 3D

map building is shown in Figure 1. Then we introduce the

transformation from 2D image to 3D point cloud by using

the following equations.

z = d/s (3)

x = (u− cx) · z/fx (4)

y = (v − cy) · z/fy (5)

where cx, cy, fx, fy are the kinect internal parameter. d and

s, are depth information and scaling factor, respectively. u
and v are the coordinate of the image pixels pt. x, y, z are

the position of the 3D point cloud. Once the 3D point clouds

at the different poses are estimated, we start to implement

point cloud registration for the pt−1 and pt by the transform

matrix:

T =

(
R3×3 t3×1

01×3 1

)
∈ R4×4 (6)

D. Extended Kalman Filter and Barometric Pressure

In this section, we first use the barometric pressure sensor

to detect the pressure value of each floor. Due to the

instability of the barometric pressure values, we then use the

kalman filter to calibrate the value. Through the corrected

pressure values, we calculate the altitude of the each floor.

Finally, we get the height difference of any two floors.

1) Extended Kalman Filter: The Kalman filter was in-

vented in the 1950s by Rudolph Emil Kalman as a technique

for filtering and prediction in linear Gaussian system [14].

Unfortunately, state transitions and measurements are rarely

linear in practice. Then the Extended Kalman filter (EKF) , is

proposed to relax the linearity assumption. The assumption

is that the state transition probability and the measurement

probabilities are governed by nonlinear functions g and h ,

respectively:

xt = g(ut, xt−1) + εt (7)
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zt = h(xt) + δt (8)

Here xt and xt−1 are state vector, and ut is the control vector
at time t. The random variable εt is a Gaussian random

vector that models the uncertainty introduced by the state
transition, with zero mean and covariance denoted as Rt.

zt is the measurement vector, and vector δt describes the
measurement noise. The distribution of δt is a multivariate
Gaussian with zero mean and covariance Qt.

EKF utilizes a method called (first order) Taylor expan-

sion. The Taylor expansion constructs a linear approximate
to a function g and h from g

′
s(Gt) and h

′
s(Ht) value

and slope. The EKF algorithm are defined by the following
equations [14]:

ūt = g(ut, ut−1) (9)

Σ̄t = GtΣt−1G
T
t +Rt (10)

Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1 (11)

ut = ūt +Kt(zt − h(ūt)) (12)

Σt = (I −KtHt)Σ̄t (13)

EKF represents the belief bel(xt) (A belief reflects the
robot’s internal knowledge about the state of environment.)

at time t by the mean ut and covariance Σt , Kt is the EKF
gain.

2) Barometric Pressure: Barometric pressure is defined

as the force per unit area exerted against by the weight of
air above that surface in the earth,s atmosphere[5]. With the
increasing altitude, the barometric pressure will decrease.

We can express this relation by using the following equation:

dp

dh
= ρg (14)

Where p is pressure, ρ is the density of air, h is the altitude
and g is the gravity. As we know, there is also a relation of
the pressure and temperature.

p = ρKM (15)

Where K is the Boltzmann constant and M is the tempera-

ture. We know the pressure of zero altitude is obtained from
mean sea level as:

P0 = 101325pa (16)

Using the above the equations, we have the altitude h:

h = −KM

g
ln(

p

P0
) (17)

Figure 2. The Guangdong provincial Key Laboratory of Digital Signal and
Image Processing, Science and Technology Building, Shantou University.
The building has 6 floors.

E. 3D Mapping of Multi-Floor Building

Based on all the above methods, we start to merge maps.

First, we use the corrected pressure values to calculate the

altitude each floor. Then, we get the differences of height

between of any two floors. The difference in height plays an

important role in the point cloud registration in a process of

point cloud transformation by the transform matrix T , which

is used as the translation vector t of the transform matrix

between two floors. The rotation matrix R is unit matrix in

this case. Finally we get the transformation matrix T . This

method is used to merge the maps of the different floors by

using the global coordinate.

IV. EVALUATION

A. The Test Environment and Robot Platform

We tested the approach in a multi-floor building using a

mobile robot. The experiment took place in the Guangdong

provincial Key Laboratory of Digital Signal and Image

Processing, located at the Science and Technology Building,

which is shown in Figure 2. The robot is a TurtleBot 2

mobile robot equipped with the Rplidar sensor, kinect sensor,

Inertial measurement unit (IMU, including barometric pres-

sure sensor) and a laptop with Linux operating system. The

IMU sensor is interfaced to the laptop through the Arduino

MEGA 2650 board by the USB. We start to implement the

experiment at the 3th , the 4th , the 5th and the 6th floors

of the building.

B. Experimental Results

1) 2D map building and localization: In our paper, we

mainly use the Gmapping package to build 2D map on each

floor. The constructed 2D map is shown in Figures 3-6. Then

we can locate the mobile robot in 2D map with the KLD-

sampling MCL.

2) 3D Map Building: In this section, the 3D environment

is obtained when the mobile robot moves from one end of

the corridor to the elevator. The length and width of the

corridor is about 30 meters and 2 meters, respectively. We

use the gamepad to control the robot moving. We subscribe

the ROS topic which publishes the pose information when

the robot moves 0.2 meters or rotates 45◦. At the same time,
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Figure 3. The 2D map of the 3th floorg p

Figure 4. The 2D map of the 4th floorg p

Figure 5. The 2D map of the 5th floorg p

Figure 6. The 2D map of the 6th floor

the kinect collects image information at the different time to

merge a pair of the point clouds of the adjacent images by

the system threads and modules in Figure 1. The 3D maps

of the whole corridor of 3th-6th floors are shown in Figures

7-10.

3) 3D Map of Multi-Floor Buildings: Using the above

the method, we get the full 3D map for each floor. Then

according to the barometric pressure value in Figure 11, we

obtain the EKF pressure values and calculate the difference

in height, which is applied to the transformation matrix and

to implement the point cloud registration in Figure 12. The

difference in height is used as the translation vector t of the

transform matrix between two floors. The rotation matrix R
is unit matrix. Finally we get the transformation matrix T .

C. Comparisons

After the 3D indoor map is constructed, we make a com-

parison between the RGB-D SLAM algorithm and ORB-

SLAM algorithm provided by Felix Endres [3] and Murartal

Raul [1], respectively.

The 3D map constructed by the RGB-D SLAM algorithm

is shown in Figure 13. The green line represent robot pose

and the yellow lines is the transformational relation between

these poses. These poses are optimized by the General Graph

Optimization (g2o) [15]. Though this algorithm presents a

part of environment, the image is distorted. The main reason

is that the experiment environment has some very similar

Figure 7. The 3D map of the 3th floorg p

Figure 8. The 3D map of the 4th floorg p

Figure 9. The 3D map of the 5th floorg p

Figure 10. The 3D map of the 6th floor
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Figure 11. pressure reading from 4 different floors of the buildingg p g g

Figure 12. 3D mapping of multi-floor buildings

Figure 13. RGBD-SLAM: 3D mapg p

Figure 14. ORB-SLAM: 3D map

features, including brown doors, symmetrical corridor and

white walls, and lack of distinct features, which could cause

mismatch and cumulative errors. These errors generated by

the visual odometer is not corrected by g2o [15].
The result of the ORB-SLAM algorithm is shown in

Figure 14. The green line is the trajectory of the robot.

The red area represent that the trajectory is the closed loop.

The black point is the feature extracted by the ORB-SLAM

algorithm. We only get the sparse point cloud which is the

feature of the environment, such as the door or windows,

not the entire environment.

V. CONCLUSION

In this paper, we implement the 3D mapping of multi-

floor building based on several sensors fusion and Monte

Carlo Localization in 2D map. The MCL makes up for

the short localization accuracy of the visual localization.

Some experiments have been conducted to test the proposed

approach with a mobile robot in a multi-floor building, and

the results show that the approach is simple, efficient and

has a better result in 3D mapping of multi-floor buildings

than other state-of-art methods.
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